Under the Radar The Effects of Monitoring Firms on Tax Compliance

Miguel Almunia* & David Lopez-Rodriguez**

*University of Warwick and CAGE **Banco de España

November 2015

Firms as Fiscal Intermediaries

- ▶ In modern tax systems, firms act as fiscal intermediaries by:
 - ► Providing third-party information (on employees, business partners, etc)
 - Collecting and remitting the main taxes (VAT, Inc Tax, CIT)
- Taxing firms is crucial for an effective tax system:
 - ► Allows the state to deal with a smaller number of agents
 - Lowers the cost of obtaining information
 - Large firms have in intrinsic interest in keeping good records (Kleven, Kreiner, Saez 2015)
 - But do they have an interest in telling the truth to the govt?

No Taxation without Information?

- ▶ Apparent puzzle: high tax compliance despite low audit rates
 - ▶ At odds with Allingham and Sandmo (1972) model of tax evasion
- Third-party information reporting critical to improve individual tax compliance
 - Experiments: Kleven et al (2011), Slemrod et al (2001)
 - ▶ Theory: Kopczuk & Slemrod (2006), Kleven, Kreiner & Saez (2015)
- ▶ Information reporting may not be enough in the case of **firms**
 - ▶ More complex transactions ⇒ Uncovering evasion also requires monitoring effort
 - i.e., human resources to conduct information cross-checks and tax audits
- * Note: the heading of this slide is the title of a recent AER paper, Pomeranz (2015)

Research Questions

- Is third-party information reporting sufficient to ensure high tax compliance by firms?
- ► To what extent is the tax authority's monitoring effort necessary for effective tax enforcement?
 - Information and audits: Complements or substitutes?
- What are the welfare implications of increasing monitoring effort on firms?
 - Holding information-reporting constant

Institutional Background: Spanish LTU

- Large Taxpayers Unit (LTU) administers and enforces taxation of firms with annual sales above €6 million
 - ▶ Threshold fixed in *nominal* terms since 1995
- Firms in the LTU (sales > €6m) face:
 - Stricter monitoring: more and better tax audits
 - Same tax schedule (CIT, VAT)
 - Very similar information-reporting requirements (minor differences)
 - LTUs have been promoted by intl orgs (IMF, OECD) to improve tax administration in many countries
- We exploit this notch in tax enforcement intensity for identification

Theoretical Predictions

- 1. Firms have incentives to bunch below the €6m threshold
 - In order to avoid stricter tax enforcement
 - Response due mainly to sales underreporting, rather than a real production response
- Stronger response among firms that sell intermediate goods (paper trail) compared to firms that sell to final consumers (little or no paper trail)
 - ▶ If 3rd-party reporting exists, audits likely to uncover evasion
 - With no paper trail (final sales, esp. in cash) very hard to detect moderate misreporting

Empirical Revenue Distribution

Pooled data for years 1995-2007

Empirical Revenue Distribution

- Counterfactual: smoothly decreasing distribution
 - Consistent with theory (eg, Lucas 1978)
- ▶ Pooled 1995-2007 data. Pattern similar for all years
- ▶ Not due to other policies/regulations:
 - No bunching response to 5% tax cut for small firms graphs
- ▶ No "hole" just above threshold
 - Resource costs of evasion and other frictions
 - Preferences: honest firms?

Related Work

- Empirical work on tax evasion by firms:
 - Pomeranz (2015), Carrillo, Pomeranz and Singhal (2014), Best et al (2014), Naritomi (2013), Devereux, Liu & Loretz (2014)
- Bunching estimation techniques:
 - ► Saez (2010), Kleven & Waseem (2013), Kleven (2015)
- Effects of size-dependent regulations on firm behavior
 - ► Theory: Guner, Ventura & Xu (2008), Restuccia & Rogerson (2008)
 - ▶ Empirics: Onji (2009), Garicano, Le Large, Van Reenen (2013)

Model: Firms and Tax Policy

- ▶ Firms: production function $y = \psi f(x, z)$, where $\psi \sim [\underline{\psi}, \overline{\psi}]$
 - $\psi = \text{managerial productivity (exogenous)}$
 - ightharpoonup y = revenue from sales (output price normalized to 1)
- Government: sets tax on profits, such that

$$\Pi = (1-t)(y-wx) - qz$$

- x = deductible inputs; z = nondeductible inputs
- Taxes create inefficiency by distorting input choices
- ► Tax evasion possible through revenue misreporting:
 - $u \equiv y \overline{y} = \text{underreported revenue} (\overline{y} = \text{reported revenue})$
 - $\kappa(u)$ = resource costs of evasion
 - θ = penalty rate if evasion is detected (assumed fixed)

Model: Probability of Detection

► Tax authority: probability of evasion detection given by

$$\delta = \phi h(u)$$

- lacktriangledown $\phi=$ monitoring effort (for example, resources spent on audits)
 - Exogenous
- ► h(u) = technology used to match tax returns to other information trails - Endogenous
 - ▶ $h_u, h_{uu} > 0$
- Implicit assumption: ϕ and h(u) are complements

Model: Expected Profits

Expected profits are given by:

$$\mathbb{E}\Pi = \underbrace{\left(1-t\right)\left[\psi f\left(x,z\right)-wx\right]-qz}_{\text{"true" after-tax profits}} + \underbrace{\left[1-\phi h\left(u\right)\left(1+\theta\right)\right]tu-\kappa\left(u\right)}_{\text{exp. return from evasion}}$$

- Mechanisms that contribute to raising tax compliance:
 - ▶ Resource costs of evasion $\kappa(u)$
 - ▶ **Deterrence effect** of monitoring effort ϕ , which is complementary to the available technology h(u)

Model: Tax Enforcement Notch

► The large taxpayers unit (LTU) introduces a discrete change in monitoring effort at an arbitrary revenue threshold:

$$\delta = \begin{cases} \phi_0 h(u) & \text{if } \overline{y} \leq y^L \\ [\phi_0 + d\phi] h(u) & \text{if } \overline{y} > y^L \end{cases}$$

- Creates a notch in tax enforcement intensity
- ▶ No change in the enforcement technology $h(\cdot)$ at the threshold

Theoretical Revenue Distribution (without LTU)

Theoretical Revenue Distribution (LTU, homog. firms)

Introducing Heterogeneity: Assumptions

- 1. Heterogeneous "effective" monitoring effort, ϕ
 - Effectiveness of monitoring effort depends on traceability of misreported transactions
 - Retailer selling to final consumer vs Wholesaler selling to other firms
- 2. Heterogeneous resource costs of evasion, $\kappa(u)$
 - Firms with higher costs of evasion are less responsive to incentives to evade
 - More complex firms (more employees, higher fixed assets) face higher resource costs of evasion (Kleven, Kreiner, Saez 2015)

Heterogeneity: Predictions

- Different bunching response depending on traceability of misreported transactions
 - ► Firms with easily traceable transactions have a **stronger** incentive to bunch, because the *effective* jump in enforcement intensity at LTU threshold is larger
- 2. No "hole" above the LTU threshold
 - For some firms, resource costs of evasion are prohibitive, so they don't respond

Theoretical Revenue Distribution (Heterogeneous model)

Context: Spanish Tax Authority

- Highly-developed information systems
 - Similar to comparable EU countries
 - Taxpayers selected for audit based on "risk" criteria
 - Approx. 10% of LTU firms audited each year
 - Less than 1% of non-LTU firms audited each year
- Stagnant workforce (enitre tax authority, not just LTU)
 - ► Tax authority is **understaffed** relative to EU average

Context: Spanish Tax Administration

Data

- Financial statements submitted to Commercial Registry (compulsory for all firms)
 - Administrative dataset maintained by the Bank of Spain
 - ► Earlier version used Amadeus similar data, less disaggregated
- Coverage: 80% of all firms with revenue €3-€9 million
 - Profit & Loss account, balance sheet, sector, location
 - Unbalanced panel for the period 1995-2007
- Accounting vs Fiscal data:
 - Operating revenue in accounting data must match tax returns
 - Taxable profits estimated using profit tax liability and accounting profit

Bunching Estimation Strategy

- Use bunching techniques for notches
 - Kleven & Waseem (2013), Kleven (2015)
- Steps:
 - 1. Construct counterfactual density:
 - Fit flexible polynomial to observed density
 - Exclude interval [y_{lb}, y_{ub}], ensuring that excess bunching mass below threshold (B) equals missing mass above threshold (H)
 - 2. Use excess bunching as a sufficient statistic for the **reported revenue** response of bunchers

Bunching Estimation Strategy: Counterfactual

Standard Bunching Estimator

Homogeneous firms; no optimization frictions

- lacktriangle Assume "small" jump in enforcement intensity, $d\phi>0$
- ► Some firms from interval $(y^L + d\overline{y})$ now bunch at y^L
- Number of excess bunching firms:

$$B = \int_{y^L}^{y^L + d\bar{y}} g_0(\bar{y}) d\bar{y} \approx g_0(y^L) d\bar{y}$$

- $g_0(\bar{y})$ is the counterfactual density with no LTU
- Define estimator b:

$$b = \frac{B}{g_0\left(\bar{y}^L\right)} \approx d\bar{y}$$

b is the reduction in reported revenue by marginal buncher

Bunching Estimator with Heterogeneity

Heterogeneous "effective" monitoring effort; no optimization frictions

• Once we introduce heterogeneity in effective monitoring effort ϕ , we re-define the estimator as

$$b_{\mathsf{av}} = rac{B}{\mathsf{g}_0\left(\overline{y}^L
ight)} pprox \mathbb{E}\left[dar{y}_\phi^M
ight]$$

- ► b_{av} is the **average response** in reported revenue by the marginal buncher at each enforcement intensity level
 - \blacktriangleright since there is a continuum of $\phi,$ this is essentially the average response in the population, estimated locally

Bunching Estimator with Heterogeneity and Frictions

Heterogeneous "effective" monitoring effort and frictions

- ► Some firms do not react due to high resource costs of evasion (and potentially other frictions)
- Let α denote the proportion of non-optimizing firms (Kleven & Waseem 2013)
 - ▶ Estimated in practice as the ratio of firms observed in $[\overline{y}^L, y_{ub}]$ compared to the counterfactual ($\alpha \approx 0.8$ in this setting)
- ▶ Then, we can define the estimator:

$$b_{\mathsf{adj}}^{\mathsf{lb}} = rac{b_{\mathsf{av}}}{(1-lpha)} \simeq \mathsf{E}\left[d\overline{y}_{\phi}^{\mathsf{M}}
ight]$$

- b_{adj} provides a *lower bound* for the average structural response (i.e., in a world without resource costs)
- ► The *upper bound* is given by the point of convergence between counterfactual and observed density $\left(b_{adj}^{ub}\right)$

Bunching Estimates

Bunching Estimates

- ► Firms in the bunching range (6,6.5) reduce their reported revenue by €94,000 *on average* in response to the LTU threshold
- Some firms do not respond. May be due to:
 - Costs of evasion (eg, operating in cash, extra set of books)
 - Other optimization frictions
 - Preferences (honesty, risk aversion)
- Taking into account all adjustment costs, bunching firms reduce their reported revenue by (€276,000, €520,000) on average
 - Structural response that we would observe in the absence of adjustment costs

Reported tax bases: Taxable Profit Margin

Reported tax bases: Value Added

Reported Tax Bases: Interpretation

- Real vs evasion response:
 - Strongly suggestive evidence that bunching mostly due to sales underreporting (evasion response)
 - Rather than real production adjustment
 - Stable trends beyond the bunching range
 - Addresses concern of selection bias around the threshold
 - Firms with higher "true" profits have more incentives to misreport and mimic firms with lower profits
- ▶ Is there also input misreporting?

Input Misreporting Incentives

Baseline model only allows for *revenue* underreporting. Consider incentives for input misreporting:

- Material input expenditures: incentives to overreport
 - lower corporate income tax liability
 - lower VAT remitted to government
- ▶ Labor input expenditures: (weak) incentives to underreport
 - underreport to lower payroll tax (38% rate)
 - overreport to lower CIT (35% rate)
 - workers would not accept overreporting; stringent labor regulations; downward rigidity

Reported Material Input Costs

Reported Wage Bill

Heterogeneous Responses: Complementarity Result

- ➤ To test whether information and audits are complementary, compare behavior of firms at different stages of value chain
- Proxy for position in the value chain using sector-level index:

$$FC_s = \frac{Final\ Consumer\ Sales_s}{Total\ Sales_s}$$

- Sector-level data from input-output tables
- Sectors with lower FC_s (more information) expected to respond more strongly to higher audit effort
 - If information and audits were substitutes, these firms would respond less

Bunching by Sector vs Share of Final Consumer Sales

Bunching by Sector vs Median Number of Employees

Welfare Analysis

- ► Let social welfare be the sum of firms' expected net profits plus expected tax revenue
 - Assume citizens are firm owners
- What is the net welfare change from increasing monitoring effort across firms and returning the additional revenue lump sum?
 - ► Additional tax revenue is just a **transfer** (=)
 - Reduction in resource costs of evasion (+)
 - ▶ Administrative cost of additional enforcement (−)
 - ▶ Increase in distortion from taxes (−)
 - Note: if we assumed fixed tax revenue target, then possible to lower tax rates in other tax bases.

Welfare Analysis

- lacktriangle Empirically, no distortion of real production $\Rightarrow rac{dP}{d\phi} pprox 0$
 - P = gross true profit; $\phi = \text{monitoring effort}$
 - Simplifies our analysis substantially
- Notice that resource costs & frictions contribute to better compliance
- Final expression:

$$\frac{d\mathbb{E}W}{d\phi} = \underbrace{\int_{\overline{y}_{min}}^{\overline{y}_{max}} \left[-\kappa_u(u) \frac{du}{d\phi} \right] \cdot g_0(\overline{y}) d\overline{y}}_{\Delta admin cost} \geq 0$$

$$\Delta \text{ resource cost}$$

Welfare: Marginal Resource Costs of Evasion

- ▶ Consider the marginal firm reporting just above \overline{y}^L . They could report \overline{y}^L to be in the low monitoring effort regime:
 - ► Evidence shows that firms below \overline{y}^L report lower tax bases on CIT (1%), VAT (3%) and Payroll Tax (1%)
- Estimating marginal resource costs (Gorodnichenko et al. 2009):

Mgl. RC
$$pprox \frac{\Delta Tax \ Liability}{Tax \ Base}$$
 $pprox \frac{ \in 19,500}{360,000} pprox 5.5\%$

▶ Welfare gain of including one additional firm in the LTU is:

$$\Delta$$
W = Mgl. RC · Δ TaxBase
≈ 5.5% · €60,000 ≈ €3,300

Welfare: Administrative Cost of LTU

- Marginal administrative cost of LTU is essentially cost of skilled auditors:
 - Wage of LTU auditor is approx. €60,000-€80,000
 - ▶ LTU monitors about 30,000 firms, and has 125 auditors
 - Approximate cost per firm in the LTU:

$$\Delta W = - \leq 80,000/(30,000/125) = - \leq 333$$

Note: this is an average cost, but we're interested in the marginal cost. We interpret this as the best approximation.

Welfare Calculation

- Thought experiment: change in net welfare resulting from adding one firm to LTU:
 - Marginal reduction in resource costs ≈ €3,300
 - Additional administrative cost ≈ €333
- Starting from current policy, expanding the scope of the Spanish LTU would be welfare-improving
- ▶ Implication: setting up the LTU seems to be a good policy
 - ▶ Although even harder to do that welfare calculation!

Summary of Findings

- Sharp bunching at LTU threshold reveals evasion response to stricter monitoring effort
 - Mainly via underreporting of sales
 - Suggestive evidence of evasion via input misreporting
- Sectors with high % of intermediate sales (easy to trace) feature strongest bunching at tax enforcement notch
 - Information trails are not sufficient to ensure high tax compliance by firms
 - Monitoring effort by the tax authority is a necessary complement to achieve this goal
- Devoting more human resources to audits could raise overall welfare
 - Starting from current situation in Spain

Thank You!

Sensitivity of Bunching Estimates

▶ Pick different values for y_{lb} and q (order of the polynomial), and let the data determine y_{ub} :

			î	\widehat{h}^{lb}	
Уњ	y_{ub}	q	b_{av}	$b_{adj}^{\prime b}$	
5.30	6.68	4	0.106*	0.306*	► back
	6.68	5	0.094*	0.277*	
5.40	6.68	4	0.108*	0.313*	
	6.71	5	0.101*	0.297*	
5.50	6.59	4	0.106*	0.308*	
	6.62	5	0.099*	0.289*	
5.60	6.53	4	0.102*	0.296*	
	6.59	5	0.096*	0.279*	
5.70	6.47	4	0.098*	0.285*	
	6.53	5	0.095*	0.276*	
5.80	6.38	4	0.090*	0.257*	
	6.41	5	0.089*	0.256*	
					_

^{*} Significant at the 1% level

High-Bunching: Specialized Construction Activities

High-Bunching: Manufacturing of Metals

Low-Bunching: Restaurants and Hotels

Low-Bunching: Retail

